Title:
A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon
Authors:
Zhenyu Tian, Haoqi Zhao, Katherine T. Peter, Melissa Gonzalez, Jill Wetzel, Christopher Wu, Ximin Hu, Jasmine Prat, Emma Mudrock, Rachel Hettinger, Allan E. Cortina, Rajshree Ghosh Biswas, Flávio Vinicius Crizóstomo Kock, Ronald Soong, Amy Jenne, Bowen Du, Fan Hou, Huan He, Rachel Lundeen, Alicia Gilbreath, Rebecca Sutton, Nathaniel L. Scholz, Jay W. Davis, Michael C. Dodd, Andre Simpson, Jenifer K. McIntyre & Edward P. Kolodziej
Published:
Science, 3 December 2020
Abstract:
In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine) (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-impacted creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3-19 μg/L) at toxic concentrations (LC50 of 0.8 ± 0.16 μg/L). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.